
 

Abstract​—Unmanned aerial vehicles (UAV or drone) provide       
an effective way to get expensive or otherwise inaccessible images          
and video. This type of data is especially important for traffic           
analysis as the top-down view from a drone is ideal for gathering            
data about traffic. Just a T.A.D. (Traffic Analysis Drone) is a           
road traffic monitoring system that provides a system for         
capturing and analyzing video. The system uses a drone camera          
to capture top-down videos of traffics and performs image         
processing to extract traffic data such as density and interval          
between cars in a lane. The data is communicated to a data            
server, and a web interface is available to easily access the data. 

Index Terms – Image Processing, Traffic Analysis, Unmanned        
Aerial Vehicle 

 

I. I​NTRODUCTION 
T​RAFFIC IS A MAJOR ISSUE FOR SOCIETY AND IS ONLY PROJECTED TO            

INCREASE​. The roadways are regularly filled with cars being         
used to transport goods and people. Traffic is just a part of life             
for the average person. In 2014, commuters had an average of           
42 hours per year in delays, and very large urban areas           
(regions with over 3 million people) can have commuters with          
average delays of up to 82 hours per year [1]. These delays            
result in wasted man hours and additional costs for operating          
vehicles. Workers need to plan their daily commute with         
expectations of delays due to traffic. Truck drivers will         
encounter even more traffic as they spend their work hours on           
the road. In addition to consuming man hours, the delays          
result in increased consumption of fuel, which results in         
additional costs. The direct cost of fuels and indirect cost of           
man hours resulted in $160 billion in losses [1].  

Their costs are only projected to increase as more cars fill           
the roads. This is primarily due to the growing economy,          
workforce, and population. These factors will result in more         
cars and trucks on the road, resulting in more congestion on           
the already full roads. The response to the growing traffic has           
been inadequate as infrastructure are unable to meet the         
demands of the traffic. By 2020, the total delay time will           
increase by 1.4 billions hours, totaling 8.3 billion hours in          
traffic [2]. And, this will result in $192 billion in losses due to             
congestion, which was $160 billion in 2015 [2]. If this issue is            
not resolved or slowed, congestion will only continue to grow,          

and Americans will pay the price with their time and money. 
However, a solution is not so simple as building more road           

infrastructures. These solutions need to be based on data that          
ensures that there will be less traffic in the area, not just            
moving the traffic to a new road. Knowing where traffic          
occurs will help with deducing why it is occurring there and           
how to best tackle that space. The issue comes with how this            
data is collected. Current data collection methods primarily        
capture two types of traffic sensors: “mobile sensor data” and          
“point sensor data” [3]. Mobile sensor data is similar to google           
maps as it can capture the data of a single car via GPS, and              
point sensor data is based on a stationary camera recording          
cars in a small area [3]. These methods are inadequate as not            
all cars can be captured in point sensor data and mobile sensor            
data requires that most cars have the application available.         
Point sensor data is collected via stationary cameras on the          
road. These cameras can be easily obstructed and only provide          
a small sample of the larger traffic picture. Mobile sensor data           
is primarily done by Google Maps and GPS data from cars.           
For mobile sensor data to be useable for traffic engineers,          
almost all cars on the road would need to be recorded [3].            
Mobile sensor data and point sensor data are not able to           
provide the necessary information needed for ideal traffic        
analysis. 

Just A T.A.D. will be able to provide the third type of            
sensor data: “space sensor data.” Space sensor data is able to           
provide data about all cars in a large space, such as speed,            
density, etc and is largely considered to be the most ideal in            
traffic analysis [3]. T.A.D. will utilize a drone with a          
bottom-mounted camera to capture video. The video is then         
processed to provide necessary information based on the space         
sensor data of the video. Cars are detected and their count and            
space between cars in a lane (interval) can be measured. The           
processed data is then sent to a data server where a web            
browser can be used to access and view the data.  

This data is useful to transportation engineers as it gives          
them data about the traffic situation in an area, and they can            
formulate a solution based on the data provided. The space          
sensor data provided is normally hard to obtain. It usually          
entailed using a helicopter to capture videos of traffic, which          
then needs to be further processed. Due to the cost associated           
with this collection method, cameras collecting point sensor        
data are preferred. T.A.D. will provide not only a means of           
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collecting space sensor data but also provide analysis of that          
data. In addition, by using a drone, the general cost of           
obtaining is comparatively cheaper.  

Traffic engineers will be able to use T.A.D. to improve          
traffic conditions by having the necessary data needed to make          
decisions. The possibility of less traffic on the roads will mean           
a better economy as people and goods will reach their          
destinations sooner. This also means businesses will encounter        
lower losses Despite these benefits, the unintended       
consequence is the drone’s surveillance capabilities. The       
drone will be able to collect a substantial amount of video           
data. Although, traffic cameras already collect a substantial        
amount of video data, a drone is able to fly anywhere and            
record data. It is important that the public understands that it is            
only for traffic data. More concerns will be raised if T.A.D. is            
used in residential areas as it would have homes in its field of             
view. 

II. DESIGN 

A. Overview 
T.A.D. is a video capture and analysis system that utilizes a           

drone to obtain top-down video of traffic to be used for           
processing and analysis. The general system can be applied to          
any drone where the module will fit. It consists of a Raspberry            
Pi computer with a camera. The drone is operated manually          
and primarily acts as a medium for transporting this module. 

Fig 1. General block diagram of TAD System 
 

The block diagram, displayed in fig. 1, shows the main          
components of the T.A.D. system. The drone block consists of          
a Raspberry Pi and the drone hardware. The drone itself is not            
necessarily part of the design but does allow for additions, if           
needed. The drone will be controlled manually in this proof of           
concept, but can also have pre-planned flight paths for         
autonomous flight. The Raspberry Pi consists of the a camera          

and image processing software. The camera is used to provide          
video to the image processing. The image processing is         
primarily concerned with car count and density of the         
video.This is done through image processing techniques that        
will be described in detail in a later section. Only the car count             
and density are sent to the database. The video itself is not sent             
as all the necessary data can be calculated on the Raspberry Pi            
and that data can be sent to the server. This data is sent via              
Wi-Fi. Once the data is in the database, a web browser can be             
used to access it. Data is refreshed every 5 seconds, and it can             
be viewed and downloaded. 

The design alternatives were primarily related to where the         
image processing would be done and how it would         
communicate the results to the server. Initially, the video was          
going to be sent to the server, where it would be processed.            
This provided more flexibility with the processing power        
needed for the algorithm. However, the final decision was to          
have the image processing on the Raspberry Pi as transmitting          
video was infeasible with the earlier goal of 3G. Wi-Fi was the            
final choice as the 3G component could not be finished. This           
requires the drone to have Wi-Fi access in order to transmit           
the processed data to the database.. Additional traffic analysis         
data can be calculated, but would require additional time and          
more processing power. A GUI could also be available on the           
web browser, but would require additional work with        
integrating a GPS.  

Table 1 lists the specifications set forth at the point of MDR            
and includes portions that will be realized upon completion         
and integration. The flight time and payload specification is         
based on the drone used. In addition, flight time includes the           
drone flying to the desired observation point. The altitude         
displayed is the one used during development and provided a          
balance of car size and view of the road.. The browser refresh            
rate is current setting at which the web site will refresh its            
tables to display any new traffic data.. 

 
SYSTEM SPECIFICATIONS 

Specification Value 
Flight Time 15 minutes 

Altitude 40 m (131.2 feet) 
Autopilot Available 
Payload < 3 ounces 
Range 1 km (0.621 miles) 

Browser Data Refresh Rate 5 seconds 
Table 1. General T.A.D. system specifications 

 

B. Block 1: Raspberry Pi Modules 
The Raspberry Pi Modules are made up of both the          

Arducam OV5647 Video Module (camera) [4] and the        
Huawei E353 3G USB Wireless Modem (3G dongle) [5]. 

 
 

 



3 
SDP17 Team 9, Just a T.A.D. 
 

 
 
Both of these will be connected to and interfacing with a           

Raspberry Pi, similar to the one shown below. 
 
 

 
Fig 2. Raspberry Pi, compact computer used for educational purposes 
 

The dongle weighs less than 1.05 ounces and has download          
speeds up to 150Mbps. Since we chose AT&T as our data           
provider, the dongle should provide internet wherever AT&T        
has service. 

 
Fig 3. Huawei E353 3G USB Wireless Modem 
 

The camera weighs 0.3 ounces and is capable of taking          
photos in resolutions ranging from 480p to 1080p depending         
on the configuration. At two meters, its field of view is 2.0m            
x 1.33m.  The camera’s angle of view is 54 x 41 degrees. 

 
Fig 4. ArduCam, interfaces with the Raspberry Pi to capture video 
 

The camera is controlled by the Raspberry Pi and captures          
frames at regular intervals to create a video. While capturing          
the footage of a road, the Raspberry Pi is also processing each            
frame of the video to obtain our data(See Block 2 for Image            
Processing). Then, the 3G dongle was supposed to be used to           
communicate the results from the Raspberry Pi to our         
database.  Unfortunately, this was not achievable. 

Before being able to record video, the Raspberry Pi had to           
be interfaced with the ArduCam. The Raspberry Pi, at first,          
wouldn’t recognise the ArduCam upon plugging it into the         
camera interface, so the camera’s initial setup lasted a few          
hours. The cause of this problem was a loose connection in           
the ArduCam’s hardware. Applying pressure to the       
connections on the camera allowed for it to be recognised by           
the Raspberry Pi. 

The ArduCam was then programmed by using the PiCamera         
library in python. We then mounted the Raspberry Pi and          
camera onto the drone for testing. Our program was         
developed so that the camera has a fixed delay before it begins            
taking video. This is to account for the time needed by the            
drone to take-off and fly to the desired nearby location. After           
the drone is in place and the delay ends, the Raspberry Pi            
begins taking video and processing each frame as it’s         
captured. This will be further described in the Image         
Processing Portion(Block 2). 

In attempt to achieve networking via the 3G connection, the          
Raspberry Pi also needed to be interfaced with the Huawei          
E353 USB Wireless Modem. After plugging the dongle into         
the Raspberry Pi, it was immediately recognised as a USB          
device. This was as expected because it was in USB mode,           
but needed to be changed into the modem mode for it to begin             
transmitting data. After many hours of testing and        
researching, a program called USB Modeswitch allowed us to         
achieve this. This program requires a file to contain the          
Huawei E353’s specific ModeSwitch identity, a very lengthy        
number found online after many hours of research. This         
allowed the Raspberry Pi to switch the dongle into modem          
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mode so that it may begin transmitting. 
The next step was to configure the dongle so that it may use             

the SIM card and connect to AT&T’s 3G network. WVDial,          
PPP, and sakis3G are USB 3G configuration libraries that         
were used in attempt to connect the dongle to AT&T’s          
network.. After none of these fixed our problem, further         
troubleshooting showed that the dongle was being recognised        
as a network interface. Therefore, we attempted to ping         
various known websites and received responses. It was later         
determined that these responses were from the dongle itself         
instead of the actual web servers. We could only ping the           
dongle and not anything beyond that. 

It appeared now that the dongle was acting like a router           
without a DNS service. We manually updated the dongle’s         
routing tables in attempt to circumvent this problem, but that          
still did not help our situation. 

After much more troubleshooting, we were unable to        
connect the 3G dongle to AT&T’s network, but two final          
possible solutions were found. 

First, the LED on the dongle was flashing in a manner that             
means it cannot find the network. Therefore, the dongle might          
not be connecting because it doesn’t have AT&T service in          
the areas we have been testing. We were only able to test            
different areas based on whether a cell phone could connect to           
AT&T’s network. Since the antennae on cell phones are         
different from that in our dongle, we cannot conclude that          
because a cell phone has service, the dongle does also. The           
dongle appears to have never been in range of AT&T’s          
network. If redoing this project, we would try using a          
different service provider to remedy this. 

Second, we came across multiple times in our research that          
the Raspberry Pi’s USB ports might not output enough power          
for the dongle to perform correctly. To fix this, others have           
used an external, powered USB hub. Unfortunately, this        
would be too much weight for us to mount on our drone, so             
this fix is infeasible. 

In the end, we were able to successfully use the ArduCam           
as desired, but we were unable to implement the Huawei E353           
3G USB Wireless Modem into our final project design. 

Past skills which have aided us in our work include, but are            
not limited to: Programming, Networking, and Hands on Lab         
courses. 

C. Block 2: Image processing 
This block (Fig. 1) consists of the majority of the novel           

engineering work. The broad goals of this block is: given the           
video feed from the drone’s onboard camera, find the cars in           
any given frame on a chosen road, the spacing between cars in            
each lane on a chosen road, and the density of cars. The            
spacing is defined by the distance  ​s​i​ ​between cars[3]: 

s​i​ = x​i-1 ​- x​i 
The density ​k is defined by the number of vehicles ​N           

observed on a unit length of  road ​L​ [3]: 

k = N/L 
With some tolerance for error with regard to the incomplete          

spacing of the first and last vehicles, we can restate ​L as the             
sum of the spacings between cars [3]: 

L = Σ xN
i = 1 i  

Now that we’ve defined our goals, we can proceed to our 
approaches and solutions to problems encountered.  

We used OpenCV as a starting point, as it is a widely used 
computer vision library which is cross-platform capable 
because it uses Python. This allows us to develop code on our 
main computers and be reasonably sure that the code will 
work on the Raspberry Pi. 

Early on, the group decided that a stationary, purely 
top-down perspective would generate the simplest data, 
considering distortion from perspective and optics. This 
top-down data would also make the calculation of spacing and 
density simpler, as we would need to account for 
trigonometric distortion of spacing and density less as well, as 
in Fig. 2. 

 
Fig 5. This demonstrates the distortion seen by a camera due to optical and              
perspective effects. The center of the image is relatively undistorted, but near            
the edges what should be dots on a grid can be seen as rays at an angle [6]. 
 

At first, our attempts were primarily naive approaches using         
built-in tools in OpenCV, such as edge detection[7] or built-in          
background subtraction [8]. Simple Canny [7] edge detection        
was not a viable approach as for any given image, there was            
too much noise to reliably detect a car versus the pavement,           
and it was exceptionally sensitive to car color. Background         
subtraction was more generally more accurate than edge        
detection in our stationary camera test cases, but even slight          
movement would make the camera background subtraction       
fail completely, which is a concern for . 

Thresholding[9] was another naive approach, but it was        
relatively difficult to pick a thresholding value that did not          
exclude a significant number of cars in a particular test image,           
and it would have to be adjusted to local lighting conditions.           
Even then, in our available test videos, the resulting detection          
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rate was not as high as would be preferable for the           
trial-and-error involved in picking threshold values. 

The lack of reasonable test data was an issue early on, as it             
made it difficult to determine if our methods were failing due           
to variables that were irrelevant in our chosen data collection          
method. For example, we were unable to find traffic data from           
an overhead stationary drone, and we made due with data          
collected from a moving drone [10], and data collected from          
stationary cameras overlooking overpasses [11][12]. This data       
makes it difficult to account for factors such as lense viewing           
angle, and for the latter two videos, the angled view prevents           
an easy calculation of spacing, and by extension, density. 

The final, chosen approach took into account the fact that          
background subtraction was an accurate method of       
determining motion for a stationary camera. By taking a frame          
of the video feed every 1/6th of a second, and mapping           
previous frames onto the most recent frame, we can         
approximate the effect of a stationary camera, masking all         
images by the area that would not be visible in the projections            
for simplicity’s sake. Then the newly projected images are fed          
into a background subtraction algorithm. Since each projection        
does not take into account the motion of individual cars within           
the image, then the background subtraction “sees” the cars as          
moving while stationary objects in the frame do not move. We           
will now walk through each step of this algorithm in more           
detail. 

 
Fig. 6. An individual frame of the video [10]. 
 

Fig. 3 is one frame of a video used for testing. Subsequent             
frames are taken at intervals of 1/6th of a second, or 10            
frames, to allow for enough movement between frames. These         
frames are put on a queue of fixed length to use in the rest of               
the algorithm. 

The algorithm used to match images is called SIFT, for           
Scale Invariant Feature Transform [13]. 

 
Fig. 7. An example of feature matching in a busy environment [14] 
 

SIFT (as shown in Fig. 4) works by convolving the image            
with a variable scale Gaussian function in ​x and ​y​, finding the            
differences between the various scales, then finding the        
extrema of these differences to get keypoint descriptors of an          
image that are invariant to scaling, rotation, and location.         
Thus, these keypoints in one image can be matched with          
keypoints in another. SIFT was chosen because it is integrated          
with OpenCV, allowing us to focus on the larger parts of the            
algorithm. 

Now that the key points for each image have been found,            
we can find the homography matrix that maps each pixel from           
one image to the other [6]. A homography matrix is a 3x3            
matrix that maps lines to lines, and it is defined by the            
following relation (where ​x​1 ​is the ​x coordinate in the image, ​x​2            
is the ​y​  coordinate, and ​x​3​ is affected by nonplanar motion): 

 
Furthermore, the structure of H affects what properties the          

transformed image has, such as representing a rotation or a          
scaling, but for the most part they are irrelevant to our           
algorithm. This is illustrated in Fig. 5.      

 
Fig. 8. A graphical explanation of how homography matrices change points in            
one perspective, the first image, to points in another perspective, the second            
image [6]. 
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Again, OpenCV provided pre-written code to estimate the         
homography matrix and apply it from one image to another. 

To compensate for the fact that the projected image does           
not cover the entirety of the newest image (as the drone is            
moving), a blank mask is also warped by the homography          
matrix and is combined with a bitwise and operator of          
previous masks. This mask will be applied over each frame to           
be fed into the background subtractor. This will ensure that the           
background subtractor does not see extraneous detail. 

The background subtractor is based on the paper “Improved          
Adaptive Gaussian Mixture Model for Background      
Subtraction” (Zivkovic, 2004) [15]. This algorithm uses a        
per-pixel estimation of whether the pixel is part of the          
background (stationary) or part of the foreground (moving) by         
a recursive methodology. It is relatively responsive to changes         
in illumination, and can also estimate whether a change in a           
portion of the background is actually just a shadow from a           
foreground object. OpenCV also provided access to and        
implementation of this algorithm. This background subtractor       
provides the estimated background as a binary mask, where         
foreground is white and background is black. After        
background subtraction, we perform opening transformation      
on an image [16] to remove noise using a 3x3 kernel. An            
opening is image erosion followed by dilation. Erosion is a          
transformation where the kernel “slides” over the image (as in          
image convolution) and if the area under the kernel centered at           
a particular pixel does not only contain white pixels, then that           
pixel is turned black in the resulting image. A dilation does the            
opposite, if any pixels are white under the kernel centered at a            
particular pixel, then the pixel is turned white in the resulting           
image [16]. 

 
Fig. 9. The output of our background subtraction. 
 

This output (shown in Fig. 6) is given to OpenCV’s contour            
detector [that thing]. This gives us a point description of          
detected contours, and we can use that to find motion, and           
presumably cars. This allows us to find Fig. 7. 

 
Fig. 10. Detected motion. As you can see, there is some noise and false              
positives, but on the whole it detects motion accurately. (The far left of the              
screen falls under the mask mentioned above.) 
 

This algorithm fails for stationary cars, but it is reasonably           
responsive to poor camera conditions in most of our test cases.           
In this particular case it detected 28 out of 30 cars in the lower              
highway, or 93%. 

While the previously used algorithm was effective under         
poor conditions, it was not feasible to use this algorithm on the            
Raspberry Pi, as it was very computationally expensive. This         
algorithm may be useful in the context of a video stream,           
where a mainframe could spend arbitrary amounts of        
computing power on it, but this approach was outside the          
scope of our MDR-designated design. As such, we created a          
new, lightweight algorithm that could run in real-time on the          
Raspberry Pi. It used some simple, statistics-based heuristics        
to gauge whether a pixel was “strange,” and if there were a            
cluster of strange pixels in the location a car would be           
expected (i.e., the road), then we declare the clustering to be a            
car. 

As a pre-flight measure, we use outside tools (in our case,            
Google Maps and the accompanying Mission Planner software        
for the 3DR IRIS, but any sufficiently detailed map would          
suffice) to find the compass direction of the road, as well as a             
GPS coordinate directly above the road. By orienting the         
drone along the road, and using GPS to direct it directly above            
the center, we can we can find the center of the desired lane             
using simple trigonometry. Apparent distance in the camera’s        
view is inversely related to height of the drone, which can be            
controlled. 

The method that the new algorithm uses is much less           
computationally expensive, so it can be feasibly used on the          
Raspberry Pi. Once the location of the lane is known          
(described above), we iterate over a line of pixels expected to           
be in the middle of the lane to find both the mean and standard              
deviation of the pixels’ values. We then iterate over the line of            
pixels again, and see when a pixel’s value minus the mean is            
greater than the standard deviation. This is how we label a           
pixel “strange.” When we have a collection of strange pixels          
nearby each other, with some tolerance for not-strange pixels         
in between, we declare this to be a car. 
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This also has the advantage of functioning in traffic jam           
situations, which the previous algorithm does not do.        
Unfortunately, the new algorithm is significantly less accurate        
than the previous algorithm, particularly with regards to false         
positives. The new algorithm only has an 80% success rate in           
our tests on average, with some cars being detected 100% of           
the time and some cars being detected 60% of the time. Like            
the previous algorithm, this discrepancy is the result of some          
cars being a very similar shade to the road in gray scale. Fig. 8              
shows a successfully identified car, and Fig. 9 shows a false           
positive due to the road itself being cracked. To mitigate this           
somewhat, we put a minimum number of frames a car could           
be detected before being identified positively as a car. This cut           
down on random noise 
 

 
Fig. 11. A successfully identified car, shown here as green pixels 
 

 
Fig. 12. A false positive. Here, part of the road is cracked significantly more              
than other sections of the road, so the cracks are assessed to be cars. 
 

The two factors above combine to form the following          
density graph (Fig. 10)  

 
Fig. 13. The recorded traffic density of 20 seconds of a test flight. 
 

As you can see, the false positive rate does make the true             
presence of a car difficult to objectively determine. 

For future directions of the project, I would consider          
machine-learning, classification based approaches, as we did       
not fully consider them at the start due to having no test            
images.  

 
 

D. Block 3: Data Server and Web Browser 
This block represents the implementation of the data server         

and web browser. From a high level point of view the           
processed data from the Raspberry Pi would be transmitted to          
the data server via 3G. The data, primarily car density and           
interval (spacing between cars), would then be sent to the          
database by the 3G dongle. The web browser would then          
query the database and provide the end user an easy to use and             
more aesthetically pleasing UI. That being said the goal of this           
block is to implement this system from the backend (database)          
to the web browser (frontend) utilizing the MEAN stack of          
web development. The MEAN stack represents the       
technologies utilized in this popular branch of web        
development which are mongoDB, ExpressJS, AngularJS, and       
NodeJS [18]. 

Starting from the bottom-up, the database is hosted on         
mongolab, a cloud based database host [19]. The primary         
benefits to hosting the database on the cloud rather than on the            
Raspberry Pi is to take as much processing load off the           
Raspberry Pi as possible due to the intense image processing          
already taking place on it. This would be more beneficial as           
opposed to running the image processing on a server as          
transmitting images over 3G would most likely cause        
bandwidth issues. The hosting service is also free up to 500           
MB at any given time which should be more than enough as            
only numbers are being stored. In addition, mongolab also         
provides a low level visualization of the database content for          
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manual entries which aids developers as well as connection         
information to the database either by the shell or mongoDB          
URI for smooth integration into the code involving data         
transmission over 3G. The database itself utilizes mongoDB, a         
NoSQL database system that stores its contents as JSON         
documents which allows for varying structure [20]. This        
allows for dynamic schemas meaning the parameters and        
variables setup in the initial database implementation can be         
changed at anytime. This flexibility favors all phases of this          
project from development and testing to final staging as a          
database bottleneck is not present. 

In order to connect the backend (database) with the         
frontend, middleware and server side technology is required.        
ExpressJS and NodeJS are both backend technologies that will         
enable this connection and framing of the web application         
with the database. NodeJS is a lightweight backend runtime         
environment used to build the raw components of the web          
application in terms of server side activity such as connections          
to the application [21]. The aforementioned connections also        
include the connection to the database which utilizes its own          
driver for mongoDB Driver API [22]. ExpressJS works in         
hand with NodeJS by creating the framework for the web          
application. More specifically, routes are created in which any         
type of HTTP request to/from the web application will need to           
be redirected by ExpressJS in order for the web application to           
service said requests as seen in this example in the ExpressJS           
4.X API [23]. 

With the backend setup, the final implementation of the         
MEAN stack is AngularJS. AngularJS can be thought of as an           
extension of HTML in which it allows for dynamic views as           
HTML in its core was made for static views in terms of web             
pages. AngularJS allows for non intrusive implementation of        
this technology with its dynamic front end framework [24]. 

The web app has been updated to be more user friendly by            
automatically updating the data table shown. It does this by          
polling the mLab database every 5 seconds so that the most           
recent data would display at the top of the table. The table also             
features infinite scrolling so that the user would not have an           
expanding web page to constantly scroll down as data fills up           
in the table. The table headers are also clickable which allow           
the user to sort in increasing/descending order based on the          
column header they have clicked. Also, a specified        
density/interval value can be queried through the search boxes         
should the user require to do so. Finally, an export as CSV            
button was implemented in which a user would be able to           
click it and a .csv of the data currently in the database would             
be downloaded instantly. This allows a traffic engineer to         
obtain raw data they require to perform analysis, custom         
calculations, etc. instead of having to rely on a graph. Basic           
programming knowledge from ECE 242 Data Structures &        
Algorithms and exposure to databases from ECE 373 Software         
Intensive Engineering applies to work done in this block. 

 
Fig. 14. Just a T.A.D. web application 

III. PROJECT MANAGEMENT 

Project Status at Completion 
Goal Completion Percentage 

System Integration 90% 
Interval Spacing 100% 
Camera and 3G 50% 

Database and Web UI 100% 
Table 2. Final Components and level of completion 

 
The MDR goals are displayed in Table 2, above. These          

goals were largely completed: car counting, interval spacing,        
and database and web UI. The only goal that had issues was            
the 3G portion of the Raspberry Pi block. This was largely due            
to complications with establishing the 3G. Other than the 3G,          
all subsystems are integrated and Wi-Fi was used in place of           
3G for communication to the server..  

Our team meets weekly with our advisors, Professor        
Hossein Pishro-Nik and Professor Daiheng Ni (CEE).. We        
also meet separately as team to talk about individual work and           
how we will integrate our pieces for the final design. We also            
meet when ordering parts. The image processing was        
primarily handled by Alex. Alex handled image processing for         
detecting intervals between cars and developing algorithms to        
offset camera movement. Cyril assisted with integration of the         
components. He provided the code needed to communicate        
data to the server and the code needed to feed camera data            
directly to the image processing. Chris was responsible for the          
Raspberry Pi and its modules. This included setting up the          
Raspberry Pi’s 3G attachment. Matt was responsible for the         
data server and creation of the web page that displays the data            
from the drone. In addition to each member’s individual         
components, all team members were responsible for       
completion of the project and assisted each other when         
necessary. 

Better time management was needed as not all components         
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were integrated and completed at the time of FPR. In the end,            
the 3G portion of the project could not be completed. This was            
a result primarily due to poor time management and required          
more support from the group as a whole. However, further          
integration was done between FPR and demo day. All         
subsystems except 3G were integrated with each other and         
provided a system that could process images from the live          
camera feed and then send the processed data to the server via            
Wi-Fi.  

IV. CONCLUSION 
Our team accomplished most of our goals since MDR, but          

encountered issues with the 3G module. We did not expect          
this component to have as many issues as it did. In addition,            
the sim card was delayed and further postponed        
implementation of this overall block. The other blocks of the          
project were completed and integrated. Wi-Fi was used for         
communication of the processed data from the Raspberry Pi to          
the server. Overall the project did not meet its original goals,           
but significant progress was made which allowed for all         
components to be completed and integrated except for the 3G. 

The majority of the project is completed and integrated         
together except for the 3G. The image processing block is able           
to get an accurate car count and interval about 80% of the            
time. The Raspberry Pi block contains the image processing         
and provides integration between the camera and image        
processing. Instead of 3G, Wi-Fi is used to communicate         
image processing data to the server block. The server block          
contains the database and refreshes every 5 seconds to update          
the displayed data. In addition, a .csv file is available for           
download. The drone can be controlled by autopilot or with          
the remote controller. Telemetry data can be recorded by         
connecting the Iris 3DR+ USB antenna to a phone or          
computer to log the location, altitude, and direction of the          
drone. 

APPENDIX 
 
A. Application of Engineering 
 

Just a T.A.D. involved the use of many engineering         
concepts as well as math and some civil engineering. The          
primary concepts involved in the project were data structures         
and algorithms, image processing, and traffic analysis       
concepts. The project was largely software based as the team          
consisted of four computer systems engineering majors. The        
image processing and Raspberry Pi integration code was        
written in Python. The data server and web browser were          
largely written in languages used in the MEAN stack of web           
development. Exposure to these languages are outside the        
scope of engineering classes. However, the basic concepts of         
programming and software development were used and taught        
in coursework from ECE 242, ECE 373, and ECE 570. Traffic           
analysis concepts were also learned in order to understand         
measurements for interval. Professor Ni provided his textbook        

and consulting in this matter. Much of the image processing          
and web development were learned during the process. 
 
B. T.A.D. COST 

Below is the cost of the project in terms of development           
and production cost. However, the majority of the components         
cannot be bought in bulk. In addition, the drone used in           
development was provided by Professor Pishro-Nik. The costs        
are shown in table 3. 

 
Development Production 

Part Cost($) Part Cost($) 
Drone Free* Drone 598.00 

Raspberry Pi 49.99 Raspberry Pi 49.99 
Raspberry Pi 

Battery 16.99 Raspberry Pi 
Battery 

16.99 

Camera Module 14.99 Camera Module 14.99 
Huawei 3G 

Modem 
33.99 3G Dongle 33.99 

3G Subscription 25.00 3G Subscription 25.00 
USB cord 5.00 USB cord 0.41 

FAA 
Registration 

5.00 FAA 
Registration 

5.00 

Total 150.96 Total 744.37 
Table 3. Cost of Just a T.A.D. 
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