

Abstract​—Unmanned aerial vehicles (UAV or drone) provide
an effective way to get expensive or otherwise inaccessible images
and video. This type of data is especially important for traffic
analysis as the top-down view from a drone is ideal for gathering
data about traffic. Just a T.A.D. (Traffic Analysis Drone) is a
road traffic monitoring system that provides a system for
capturing and analyzing video. The system uses a drone camera
to capture top-down videos of traffics and performs image
processing to extract traffic data such as density and interval
between cars in a lane. The data is communicated to a data
server, and a web interface is available to easily access the data.

Index Terms – Image Processing, Traffic Analysis, Unmanned
Aerial Vehicle

I. I​NTRODUCTION
T​RAFFIC IS A MAJOR ISSUE FOR SOCIETY AND IS ONLY PROJECTED TO

INCREASE​. The roadways are regularly filled with cars being
used to transport goods and people. Traffic is just a part of life
for the average person. In 2014, commuters had an average of
42 hours per year in delays, and very large urban areas
(regions with over 3 million people) can have commuters with
average delays of up to 82 hours per year [1]. These delays
result in wasted man hours and additional costs for operating
vehicles. Workers need to plan their daily commute with
expectations of delays due to traffic. Truck drivers will
encounter even more traffic as they spend their work hours on
the road. In addition to consuming man hours, the delays
result in increased consumption of fuel, which results in
additional costs. The direct cost of fuels and indirect cost of
man hours resulted in $160 billion in losses [1].

Their costs are only projected to increase as more cars fill
the roads. This is primarily due to the growing economy,
workforce, and population. These factors will result in more
cars and trucks on the road, resulting in more congestion on
the already full roads. The response to the growing traffic has
been inadequate as infrastructure are unable to meet the
demands of the traffic. By 2020, the total delay time will
increase by 1.4 billions hours, totaling 8.3 billion hours in
traffic [2]. And, this will result in $192 billion in losses due to
congestion, which was $160 billion in 2015 [2]. If this issue is
not resolved or slowed, congestion will only continue to grow,

and Americans will pay the price with their time and money.
However, a solution is not so simple as building more road

infrastructures. These solutions need to be based on data that
ensures that there will be less traffic in the area, not just
moving the traffic to a new road. Knowing where traffic
occurs will help with deducing why it is occurring there and
how to best tackle that space. The issue comes with how this
data is collected. Current data collection methods primarily
capture two types of traffic sensors: “mobile sensor data” and
“point sensor data” [3]. Mobile sensor data is similar to google
maps as it can capture the data of a single car via GPS, and
point sensor data is based on a stationary camera recording
cars in a small area [3]. These methods are inadequate as not
all cars can be captured in point sensor data and mobile sensor
data requires that most cars have the application available.
Point sensor data is collected via stationary cameras on the
road. These cameras can be easily obstructed and only provide
a small sample of the larger traffic picture. Mobile sensor data
is primarily done by Google Maps and GPS data from cars.
For mobile sensor data to be useable for traffic engineers,
almost all cars on the road would need to be recorded [3].
Mobile sensor data and point sensor data are not able to
provide the necessary information needed for ideal traffic
analysis.

Just A T.A.D. will be able to provide the third type of
sensor data: “space sensor data.” Space sensor data is able to
provide data about all cars in a large space, such as speed,
density, etc and is largely considered to be the most ideal in
traffic analysis [3]. T.A.D. will utilize a drone with a
bottom-mounted camera to capture video. The video is then
processed to provide necessary information based on the space
sensor data of the video. Cars are detected and their count and
space between cars in a lane (interval) can be measured. The
processed data is then sent to a data server where a web
browser can be used to access and view the data.

This data is useful to transportation engineers as it gives
them data about the traffic situation in an area, and they can
formulate a solution based on the data provided. The space
sensor data provided is normally hard to obtain. It usually
entailed using a helicopter to capture videos of traffic, which
then needs to be further processed. Due to the cost associated
with this collection method, cameras collecting point sensor
data are preferred. T.A.D. will provide not only a means of

C. Barbeau from Ludlow, MA (email: cbarbeau@umass.edu)
C. Caparanga from Quincy, MA (email: ccaparanga@umass.edu)
A. Dunyak from X, MA (email: adunyak@umass.edu)
M. T. Shin from Weymouth, MA (email: tshin@umass.edu)

2
SDP17 Team 9, Just a T.A.D.

collecting space sensor data but also provide analysis of that
data. In addition, by using a drone, the general cost of
obtaining is comparatively cheaper.

Traffic engineers will be able to use T.A.D. to improve
traffic conditions by having the necessary data needed to make
decisions. The possibility of less traffic on the roads will mean
a better economy as people and goods will reach their
destinations sooner. This also means businesses will encounter
lower losses Despite these benefits, the unintended
consequence is the drone’s surveillance capabilities. The
drone will be able to collect a substantial amount of video
data. Although, traffic cameras already collect a substantial
amount of video data, a drone is able to fly anywhere and
record data. It is important that the public understands that it is
only for traffic data. More concerns will be raised if T.A.D. is
used in residential areas as it would have homes in its field of
view.

II. DESIGN

A. Overview
T.A.D. is a video capture and analysis system that utilizes a

drone to obtain top-down video of traffic to be used for
processing and analysis. The general system can be applied to
any drone where the module will fit. It consists of a Raspberry
Pi computer with a camera. The drone is operated manually
and primarily acts as a medium for transporting this module.

Fig 1. General block diagram of TAD System

The block diagram, displayed in fig. 1, shows the main
components of the T.A.D. system. The drone block consists of
a Raspberry Pi and the drone hardware. The drone itself is not
necessarily part of the design but does allow for additions, if
needed. The drone will be controlled manually in this proof of
concept, but can also have pre-planned flight paths for
autonomous flight. The Raspberry Pi consists of the a camera

and image processing software. The camera is used to provide
video to the image processing. The image processing is
primarily concerned with car count and density of the
video.This is done through image processing techniques that
will be described in detail in a later section. Only the car count
and density are sent to the database. The video itself is not sent
as all the necessary data can be calculated on the Raspberry Pi
and that data can be sent to the server. This data is sent via
Wi-Fi. Once the data is in the database, a web browser can be
used to access it. Data is refreshed every 5 seconds, and it can
be viewed and downloaded.

The design alternatives were primarily related to where the
image processing would be done and how it would
communicate the results to the server. Initially, the video was
going to be sent to the server, where it would be processed.
This provided more flexibility with the processing power
needed for the algorithm. However, the final decision was to
have the image processing on the Raspberry Pi as transmitting
video was infeasible with the earlier goal of 3G. Wi-Fi was the
final choice as the 3G component could not be finished. This
requires the drone to have Wi-Fi access in order to transmit
the processed data to the database.. Additional traffic analysis
data can be calculated, but would require additional time and
more processing power. A GUI could also be available on the
web browser, but would require additional work with
integrating a GPS.

Table 1 lists the specifications set forth at the point of MDR
and includes portions that will be realized upon completion
and integration. The flight time and payload specification is
based on the drone used. In addition, flight time includes the
drone flying to the desired observation point. The altitude
displayed is the one used during development and provided a
balance of car size and view of the road.. The browser refresh
rate is current setting at which the web site will refresh its
tables to display any new traffic data..

SYSTEM SPECIFICATIONS

Specification Value
Flight Time 15 minutes

Altitude 40 m (131.2 feet)
Autopilot Available
Payload < 3 ounces
Range 1 km (0.621 miles)

Browser Data Refresh Rate 5 seconds
Table 1. General T.A.D. system specifications

B. Block 1: Raspberry Pi Modules
The Raspberry Pi Modules are made up of both the

Arducam OV5647 Video Module (camera) [4] and the
Huawei E353 3G USB Wireless Modem (3G dongle) [5].

3
SDP17 Team 9, Just a T.A.D.

Both of these will be connected to and interfacing with a

Raspberry Pi, similar to the one shown below.

Fig 2. Raspberry Pi, compact computer used for educational purposes

The dongle weighs less than 1.05 ounces and has download
speeds up to 150Mbps. Since we chose AT&T as our data
provider, the dongle should provide internet wherever AT&T
has service.

Fig 3. Huawei E353 3G USB Wireless Modem

The camera weighs 0.3 ounces and is capable of taking
photos in resolutions ranging from 480p to 1080p depending
on the configuration. At two meters, its field of view is 2.0m
x 1.33m. The camera’s angle of view is 54 x 41 degrees.

Fig 4. ArduCam, interfaces with the Raspberry Pi to capture video

The camera is controlled by the Raspberry Pi and captures
frames at regular intervals to create a video. While capturing
the footage of a road, the Raspberry Pi is also processing each
frame of the video to obtain our data(See Block 2 for Image
Processing). Then, the 3G dongle was supposed to be used to
communicate the results from the Raspberry Pi to our
database. Unfortunately, this was not achievable.

Before being able to record video, the Raspberry Pi had to
be interfaced with the ArduCam. The Raspberry Pi, at first,
wouldn’t recognise the ArduCam upon plugging it into the
camera interface, so the camera’s initial setup lasted a few
hours. The cause of this problem was a loose connection in
the ArduCam’s hardware. Applying pressure to the
connections on the camera allowed for it to be recognised by
the Raspberry Pi.

The ArduCam was then programmed by using the PiCamera
library in python. We then mounted the Raspberry Pi and
camera onto the drone for testing. Our program was
developed so that the camera has a fixed delay before it begins
taking video. This is to account for the time needed by the
drone to take-off and fly to the desired nearby location. After
the drone is in place and the delay ends, the Raspberry Pi
begins taking video and processing each frame as it’s
captured. This will be further described in the Image
Processing Portion(Block 2).

In attempt to achieve networking via the 3G connection, the
Raspberry Pi also needed to be interfaced with the Huawei
E353 USB Wireless Modem. After plugging the dongle into
the Raspberry Pi, it was immediately recognised as a USB
device. This was as expected because it was in USB mode,
but needed to be changed into the modem mode for it to begin
transmitting data. After many hours of testing and
researching, a program called USB Modeswitch allowed us to
achieve this. This program requires a file to contain the
Huawei E353’s specific ModeSwitch identity, a very lengthy
number found online after many hours of research. This
allowed the Raspberry Pi to switch the dongle into modem

4
SDP17 Team 9, Just a T.A.D.

mode so that it may begin transmitting.
The next step was to configure the dongle so that it may use

the SIM card and connect to AT&T’s 3G network. WVDial,
PPP, and sakis3G are USB 3G configuration libraries that
were used in attempt to connect the dongle to AT&T’s
network.. After none of these fixed our problem, further
troubleshooting showed that the dongle was being recognised
as a network interface. Therefore, we attempted to ping
various known websites and received responses. It was later
determined that these responses were from the dongle itself
instead of the actual web servers. We could only ping the
dongle and not anything beyond that.

It appeared now that the dongle was acting like a router
without a DNS service. We manually updated the dongle’s
routing tables in attempt to circumvent this problem, but that
still did not help our situation.

After much more troubleshooting, we were unable to
connect the 3G dongle to AT&T’s network, but two final
possible solutions were found.

First, the LED on the dongle was flashing in a manner that
means it cannot find the network. Therefore, the dongle might
not be connecting because it doesn’t have AT&T service in
the areas we have been testing. We were only able to test
different areas based on whether a cell phone could connect to
AT&T’s network. Since the antennae on cell phones are
different from that in our dongle, we cannot conclude that
because a cell phone has service, the dongle does also. The
dongle appears to have never been in range of AT&T’s
network. If redoing this project, we would try using a
different service provider to remedy this.

Second, we came across multiple times in our research that
the Raspberry Pi’s USB ports might not output enough power
for the dongle to perform correctly. To fix this, others have
used an external, powered USB hub. Unfortunately, this
would be too much weight for us to mount on our drone, so
this fix is infeasible.

In the end, we were able to successfully use the ArduCam
as desired, but we were unable to implement the Huawei E353
3G USB Wireless Modem into our final project design.

Past skills which have aided us in our work include, but are
not limited to: Programming, Networking, and Hands on Lab
courses.

C. Block 2: Image processing
This block (Fig. 1) consists of the majority of the novel

engineering work. The broad goals of this block is: given the
video feed from the drone’s onboard camera, find the cars in
any given frame on a chosen road, the spacing between cars in
each lane on a chosen road, and the density of cars. The
spacing is defined by the distance ​s​i​ ​between cars[3]:

s​i​ = x​i-1 ​- x​i
The density ​k is defined by the number of vehicles ​N

observed on a unit length of road ​L​ [3]:

k = N/L
With some tolerance for error with regard to the incomplete

spacing of the first and last vehicles, we can restate ​L as the
sum of the spacings between cars [3]:

L = Σ xN
i = 1 i

Now that we’ve defined our goals, we can proceed to our
approaches and solutions to problems encountered.

We used OpenCV as a starting point, as it is a widely used
computer vision library which is cross-platform capable
because it uses Python. This allows us to develop code on our
main computers and be reasonably sure that the code will
work on the Raspberry Pi.

Early on, the group decided that a stationary, purely
top-down perspective would generate the simplest data,
considering distortion from perspective and optics. This
top-down data would also make the calculation of spacing and
density simpler, as we would need to account for
trigonometric distortion of spacing and density less as well, as
in Fig. 2.

Fig 5. This demonstrates the distortion seen by a camera due to optical and
perspective effects. The center of the image is relatively undistorted, but near
the edges what should be dots on a grid can be seen as rays at an angle [6].

At first, our attempts were primarily naive approaches using
built-in tools in OpenCV, such as edge detection[7] or built-in
background subtraction [8]. Simple Canny [7] edge detection
was not a viable approach as for any given image, there was
too much noise to reliably detect a car versus the pavement,
and it was exceptionally sensitive to car color. Background
subtraction was more generally more accurate than edge
detection in our stationary camera test cases, but even slight
movement would make the camera background subtraction
fail completely, which is a concern for .

Thresholding[9] was another naive approach, but it was
relatively difficult to pick a thresholding value that did not
exclude a significant number of cars in a particular test image,
and it would have to be adjusted to local lighting conditions.
Even then, in our available test videos, the resulting detection

5
SDP17 Team 9, Just a T.A.D.

rate was not as high as would be preferable for the
trial-and-error involved in picking threshold values.

The lack of reasonable test data was an issue early on, as it
made it difficult to determine if our methods were failing due
to variables that were irrelevant in our chosen data collection
method. For example, we were unable to find traffic data from
an overhead stationary drone, and we made due with data
collected from a moving drone [10], and data collected from
stationary cameras overlooking overpasses [11][12]. This data
makes it difficult to account for factors such as lense viewing
angle, and for the latter two videos, the angled view prevents
an easy calculation of spacing, and by extension, density.

The final, chosen approach took into account the fact that
background subtraction was an accurate method of
determining motion for a stationary camera. By taking a frame
of the video feed every 1/6th of a second, and mapping
previous frames onto the most recent frame, we can
approximate the effect of a stationary camera, masking all
images by the area that would not be visible in the projections
for simplicity’s sake. Then the newly projected images are fed
into a background subtraction algorithm. Since each projection
does not take into account the motion of individual cars within
the image, then the background subtraction “sees” the cars as
moving while stationary objects in the frame do not move. We
will now walk through each step of this algorithm in more
detail.

Fig. 6. An individual frame of the video [10].

Fig. 3 is one frame of a video used for testing. Subsequent
frames are taken at intervals of 1/6th of a second, or 10
frames, to allow for enough movement between frames. These
frames are put on a queue of fixed length to use in the rest of
the algorithm.

The algorithm used to match images is called SIFT, for
Scale Invariant Feature Transform [13].

Fig. 7. An example of feature matching in a busy environment [14]

SIFT (as shown in Fig. 4) works by convolving the image
with a variable scale Gaussian function in ​x and ​y​, finding the
differences between the various scales, then finding the
extrema of these differences to get keypoint descriptors of an
image that are invariant to scaling, rotation, and location.
Thus, these keypoints in one image can be matched with
keypoints in another. SIFT was chosen because it is integrated
with OpenCV, allowing us to focus on the larger parts of the
algorithm.

Now that the key points for each image have been found,
we can find the homography matrix that maps each pixel from
one image to the other [6]. A homography matrix is a 3x3
matrix that maps lines to lines, and it is defined by the
following relation (where ​x​1 ​is the ​x coordinate in the image, ​x​2
is the ​y​ coordinate, and ​x​3​ is affected by nonplanar motion):

Furthermore, the structure of H affects what properties the

transformed image has, such as representing a rotation or a
scaling, but for the most part they are irrelevant to our
algorithm. This is illustrated in Fig. 5.

Fig. 8. A graphical explanation of how homography matrices change points in
one perspective, the first image, to points in another perspective, the second
image [6].

6
SDP17 Team 9, Just a T.A.D.

Again, OpenCV provided pre-written code to estimate the
homography matrix and apply it from one image to another.

To compensate for the fact that the projected image does
not cover the entirety of the newest image (as the drone is
moving), a blank mask is also warped by the homography
matrix and is combined with a bitwise and operator of
previous masks. This mask will be applied over each frame to
be fed into the background subtractor. This will ensure that the
background subtractor does not see extraneous detail.

The background subtractor is based on the paper “Improved
Adaptive Gaussian Mixture Model for Background
Subtraction” (Zivkovic, 2004) [15]. This algorithm uses a
per-pixel estimation of whether the pixel is part of the
background (stationary) or part of the foreground (moving) by
a recursive methodology. It is relatively responsive to changes
in illumination, and can also estimate whether a change in a
portion of the background is actually just a shadow from a
foreground object. OpenCV also provided access to and
implementation of this algorithm. This background subtractor
provides the estimated background as a binary mask, where
foreground is white and background is black. After
background subtraction, we perform opening transformation
on an image [16] to remove noise using a 3x3 kernel. An
opening is image erosion followed by dilation. Erosion is a
transformation where the kernel “slides” over the image (as in
image convolution) and if the area under the kernel centered at
a particular pixel does not only contain white pixels, then that
pixel is turned black in the resulting image. A dilation does the
opposite, if any pixels are white under the kernel centered at a
particular pixel, then the pixel is turned white in the resulting
image [16].

Fig. 9. The output of our background subtraction.

This output (shown in Fig. 6) is given to OpenCV’s contour
detector [that thing]. This gives us a point description of
detected contours, and we can use that to find motion, and
presumably cars. This allows us to find Fig. 7.

Fig. 10. Detected motion. As you can see, there is some noise and false
positives, but on the whole it detects motion accurately. (The far left of the
screen falls under the mask mentioned above.)

This algorithm fails for stationary cars, but it is reasonably
responsive to poor camera conditions in most of our test cases.
In this particular case it detected 28 out of 30 cars in the lower
highway, or 93%.

While the previously used algorithm was effective under
poor conditions, it was not feasible to use this algorithm on the
Raspberry Pi, as it was very computationally expensive. This
algorithm may be useful in the context of a video stream,
where a mainframe could spend arbitrary amounts of
computing power on it, but this approach was outside the
scope of our MDR-designated design. As such, we created a
new, lightweight algorithm that could run in real-time on the
Raspberry Pi. It used some simple, statistics-based heuristics
to gauge whether a pixel was “strange,” and if there were a
cluster of strange pixels in the location a car would be
expected (i.e., the road), then we declare the clustering to be a
car.

As a pre-flight measure, we use outside tools (in our case,
Google Maps and the accompanying Mission Planner software
for the 3DR IRIS, but any sufficiently detailed map would
suffice) to find the compass direction of the road, as well as a
GPS coordinate directly above the road. By orienting the
drone along the road, and using GPS to direct it directly above
the center, we can we can find the center of the desired lane
using simple trigonometry. Apparent distance in the camera’s
view is inversely related to height of the drone, which can be
controlled.

The method that the new algorithm uses is much less
computationally expensive, so it can be feasibly used on the
Raspberry Pi. Once the location of the lane is known
(described above), we iterate over a line of pixels expected to
be in the middle of the lane to find both the mean and standard
deviation of the pixels’ values. We then iterate over the line of
pixels again, and see when a pixel’s value minus the mean is
greater than the standard deviation. This is how we label a
pixel “strange.” When we have a collection of strange pixels
nearby each other, with some tolerance for not-strange pixels
in between, we declare this to be a car.

7
SDP17 Team 9, Just a T.A.D.

This also has the advantage of functioning in traffic jam
situations, which the previous algorithm does not do.
Unfortunately, the new algorithm is significantly less accurate
than the previous algorithm, particularly with regards to false
positives. The new algorithm only has an 80% success rate in
our tests on average, with some cars being detected 100% of
the time and some cars being detected 60% of the time. Like
the previous algorithm, this discrepancy is the result of some
cars being a very similar shade to the road in gray scale. Fig. 8
shows a successfully identified car, and Fig. 9 shows a false
positive due to the road itself being cracked. To mitigate this
somewhat, we put a minimum number of frames a car could
be detected before being identified positively as a car. This cut
down on random noise

Fig. 11. A successfully identified car, shown here as green pixels

Fig. 12. A false positive. Here, part of the road is cracked significantly more
than other sections of the road, so the cracks are assessed to be cars.

The two factors above combine to form the following
density graph (Fig. 10)

Fig. 13. The recorded traffic density of 20 seconds of a test flight.

As you can see, the false positive rate does make the true
presence of a car difficult to objectively determine.

For future directions of the project, I would consider
machine-learning, classification based approaches, as we did
not fully consider them at the start due to having no test
images.

D. Block 3: Data Server and Web Browser
This block represents the implementation of the data server

and web browser. From a high level point of view the
processed data from the Raspberry Pi would be transmitted to
the data server via 3G. The data, primarily car density and
interval (spacing between cars), would then be sent to the
database by the 3G dongle. The web browser would then
query the database and provide the end user an easy to use and
more aesthetically pleasing UI. That being said the goal of this
block is to implement this system from the backend (database)
to the web browser (frontend) utilizing the MEAN stack of
web development. The MEAN stack represents the
technologies utilized in this popular branch of web
development which are mongoDB, ExpressJS, AngularJS, and
NodeJS [18].

Starting from the bottom-up, the database is hosted on
mongolab, a cloud based database host [19]. The primary
benefits to hosting the database on the cloud rather than on the
Raspberry Pi is to take as much processing load off the
Raspberry Pi as possible due to the intense image processing
already taking place on it. This would be more beneficial as
opposed to running the image processing on a server as
transmitting images over 3G would most likely cause
bandwidth issues. The hosting service is also free up to 500
MB at any given time which should be more than enough as
only numbers are being stored. In addition, mongolab also
provides a low level visualization of the database content for

8
SDP17 Team 9, Just a T.A.D.

manual entries which aids developers as well as connection
information to the database either by the shell or mongoDB
URI for smooth integration into the code involving data
transmission over 3G. The database itself utilizes mongoDB, a
NoSQL database system that stores its contents as JSON
documents which allows for varying structure [20]. This
allows for dynamic schemas meaning the parameters and
variables setup in the initial database implementation can be
changed at anytime. This flexibility favors all phases of this
project from development and testing to final staging as a
database bottleneck is not present.

In order to connect the backend (database) with the
frontend, middleware and server side technology is required.
ExpressJS and NodeJS are both backend technologies that will
enable this connection and framing of the web application
with the database. NodeJS is a lightweight backend runtime
environment used to build the raw components of the web
application in terms of server side activity such as connections
to the application [21]. The aforementioned connections also
include the connection to the database which utilizes its own
driver for mongoDB Driver API [22]. ExpressJS works in
hand with NodeJS by creating the framework for the web
application. More specifically, routes are created in which any
type of HTTP request to/from the web application will need to
be redirected by ExpressJS in order for the web application to
service said requests as seen in this example in the ExpressJS
4.X API [23].

With the backend setup, the final implementation of the
MEAN stack is AngularJS. AngularJS can be thought of as an
extension of HTML in which it allows for dynamic views as
HTML in its core was made for static views in terms of web
pages. AngularJS allows for non intrusive implementation of
this technology with its dynamic front end framework [24].

The web app has been updated to be more user friendly by
automatically updating the data table shown. It does this by
polling the mLab database every 5 seconds so that the most
recent data would display at the top of the table. The table also
features infinite scrolling so that the user would not have an
expanding web page to constantly scroll down as data fills up
in the table. The table headers are also clickable which allow
the user to sort in increasing/descending order based on the
column header they have clicked. Also, a specified
density/interval value can be queried through the search boxes
should the user require to do so. Finally, an export as CSV
button was implemented in which a user would be able to
click it and a .csv of the data currently in the database would
be downloaded instantly. This allows a traffic engineer to
obtain raw data they require to perform analysis, custom
calculations, etc. instead of having to rely on a graph. Basic
programming knowledge from ECE 242 Data Structures &
Algorithms and exposure to databases from ECE 373 Software
Intensive Engineering applies to work done in this block.

Fig. 14. Just a T.A.D. web application

III. PROJECT MANAGEMENT

Project Status at Completion
Goal Completion Percentage

System Integration 90%
Interval Spacing 100%
Camera and 3G 50%

Database and Web UI 100%
Table 2. Final Components and level of completion

The MDR goals are displayed in Table 2, above. These

goals were largely completed: car counting, interval spacing,
and database and web UI. The only goal that had issues was
the 3G portion of the Raspberry Pi block. This was largely due
to complications with establishing the 3G. Other than the 3G,
all subsystems are integrated and Wi-Fi was used in place of
3G for communication to the server..

Our team meets weekly with our advisors, Professor
Hossein Pishro-Nik and Professor Daiheng Ni (CEE).. We
also meet separately as team to talk about individual work and
how we will integrate our pieces for the final design. We also
meet when ordering parts. The image processing was
primarily handled by Alex. Alex handled image processing for
detecting intervals between cars and developing algorithms to
offset camera movement. Cyril assisted with integration of the
components. He provided the code needed to communicate
data to the server and the code needed to feed camera data
directly to the image processing. Chris was responsible for the
Raspberry Pi and its modules. This included setting up the
Raspberry Pi’s 3G attachment. Matt was responsible for the
data server and creation of the web page that displays the data
from the drone. In addition to each member’s individual
components, all team members were responsible for
completion of the project and assisted each other when
necessary.

Better time management was needed as not all components

9
SDP17 Team 9, Just a T.A.D.

were integrated and completed at the time of FPR. In the end,
the 3G portion of the project could not be completed. This was
a result primarily due to poor time management and required
more support from the group as a whole. However, further
integration was done between FPR and demo day. All
subsystems except 3G were integrated with each other and
provided a system that could process images from the live
camera feed and then send the processed data to the server via
Wi-Fi.

IV. CONCLUSION
Our team accomplished most of our goals since MDR, but

encountered issues with the 3G module. We did not expect
this component to have as many issues as it did. In addition,
the sim card was delayed and further postponed
implementation of this overall block. The other blocks of the
project were completed and integrated. Wi-Fi was used for
communication of the processed data from the Raspberry Pi to
the server. Overall the project did not meet its original goals,
but significant progress was made which allowed for all
components to be completed and integrated except for the 3G.

The majority of the project is completed and integrated
together except for the 3G. The image processing block is able
to get an accurate car count and interval about 80% of the
time. The Raspberry Pi block contains the image processing
and provides integration between the camera and image
processing. Instead of 3G, Wi-Fi is used to communicate
image processing data to the server block. The server block
contains the database and refreshes every 5 seconds to update
the displayed data. In addition, a .csv file is available for
download. The drone can be controlled by autopilot or with
the remote controller. Telemetry data can be recorded by
connecting the Iris 3DR+ USB antenna to a phone or
computer to log the location, altitude, and direction of the
drone.

APPENDIX

A. Application of Engineering

Just a T.A.D. involved the use of many engineering
concepts as well as math and some civil engineering. The
primary concepts involved in the project were data structures
and algorithms, image processing, and traffic analysis
concepts. The project was largely software based as the team
consisted of four computer systems engineering majors. The
image processing and Raspberry Pi integration code was
written in Python. The data server and web browser were
largely written in languages used in the MEAN stack of web
development. Exposure to these languages are outside the
scope of engineering classes. However, the basic concepts of
programming and software development were used and taught
in coursework from ECE 242, ECE 373, and ECE 570. Traffic
analysis concepts were also learned in order to understand
measurements for interval. Professor Ni provided his textbook

and consulting in this matter. Much of the image processing
and web development were learned during the process.

B. T.A.D. COST

Below is the cost of the project in terms of development
and production cost. However, the majority of the components
cannot be bought in bulk. In addition, the drone used in
development was provided by Professor Pishro-Nik. The costs
are shown in table 3.

Development Production

Part Cost($) Part Cost($)
Drone Free* Drone 598.00

Raspberry Pi 49.99 Raspberry Pi 49.99
Raspberry Pi

Battery 16.99 Raspberry Pi
Battery

16.99

Camera Module 14.99 Camera Module 14.99
Huawei 3G

Modem
33.99 3G Dongle 33.99

3G Subscription 25.00 3G Subscription 25.00
USB cord 5.00 USB cord 0.41

FAA
Registration

5.00 FAA
Registration

5.00

Total 150.96 Total 744.37
Table 3. Cost of Just a T.A.D.

ACKNOWLEDGMENT
We would like to thank Professor Pishro-Nik for meeting

with us week-to-week and helping us stay on track. In
addition, Professor Pishro-Nik generously purchased our
drone for us, which would have been outside of our budget.
We would also like to thank Professor Ni for helping us
establish the project idea and providing information about
traffic analysis concepts. We would like to thank Professor
Hollot and Professor Koren for their insight and feedback in
establishing our project. We would also like to thank Mr. Fran
Caron for his assistance in the SDP lab and in ordering our
parts for our project.

REFERENCES
[1] E. Dooley. (2015, Aug. 26). ​Here’s How Much Time Americans Waste

in Traffic​ [Online]. Available: http://www.abcnews.go.com.
[2] D. Schrank, et al, “​2​015 Urban Mobility Scorecard,” Texas A&M

Transportation Inst. and INRIX, College Station, TX, Aug., 2015.
[3] D. Ni, ​Traffic Flow Theory A Unified Perspective​, Amherst, MA, 2015,

pp. 14-46.
[4] New Low Cost OV5647 Mini Camera Module for Raspberry Pi Now

Available (2017, Feb 6). Arducam. [Online]. Available:
http://www.arducam.com/lowcost-raspberry-pi-mini-camera-module/

[5] E353 Specifications (2017, Feb 6). Huawei. [Online]. Available:
http://consumer.huawei.com/bd/mobile-broadband/dongles/tech-specs/e
353-bd.htm

[6] C. Gava, G. Bleser, ​2D Projective Transformations​. [Online]. Available:
http://ags.cs.uni-kl.de/fileadmin/inf_ags/3dcv-ws11-12/3DCV_WS11-12
_lec04.pdf

[7] Canny Edge Detection (2016, Dec 21). OpenCV. [Online]. Available:
http://docs.opencv.org/trunk/da/d22/tutorial_py_canny.html

[8] Background Subtraction (2016, Dec 21). OpenCV. [Online]. Available:
http://docs.opencv.org/trunk/db/d5c/tutorial_py_bg_subtraction.html

10
SDP17 Team 9, Just a T.A.D.

[9] Image Thresholding (2016, Dec 21). OpenCV. [Online]. Available:

http://docs.opencv.org/trunk/d7/d4d/tutorial_py_thresholding.html
[10] Simon Laprida. Aerial drone scene of jamed [sic] highway. [Online].

Available:
https://www.videoblocks.com/video/aerial-drone-scene-of-jamed-highw
ay-top-view-of-traffic-in-the-road-city-rush-hour-camera-moves-gently-
showing-the-city-jam-ynwv5gg/

[11] Supercircuits. (2014, Aug 20). Alibi ALI-IPU3030RV IP Camera
Highway Surveillance. [YouTube video]. Available:
https://www.youtube.com/watch?v=PJ5xXXcfuTc

[12] mjrzeman. (2011, Sep 14). HTC Sensation FULL HD 1080p Video
Sample (highway traffic). [YouTube video]. Available:
https://www.youtube.com/watch?v=wWLAc6mdJrs

[13] D. Lowe. (2004, Jan 5). Distinctive image features from scale-invariant
keypoints. ​International Journal of Computer Vision​. [Online].
Available: http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

[14] Feature Matching. (2016, Dec 21). OpenCV. [Online]. Available:
http://docs.opencv.org/trunk/dc/dc3/tutorial_py_matcher.html

[15] Z. Zivkovic. (2004). Improved adaptive Gaussian mixture model for
background subtraction. ​Proceedings of the International Conference on
Pattern Recognition

[16] Morphological Transformations. (2016, Dec 21). OpenCV. [Online].
Available:
http://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.htm
l

[17] DroneKit-Python API Reference. (n.d.). 3DR. [Online]. Available:
http://python.dronekit.io/automodule.html

[18] The MEAN Stack: MongoDB, ExpressJS, AngularJS, and Node.js
(2017, Feb 5). MongoDB. [Online]. Available:
https://www.mongodb.com/blog/post/the-mean-stack-mongodb-expressj
s-angularjs-and

[19] Quick-Start Guide to mLab (2016, Dec 22). mLab. [Online]. Available:
http://docs.mlab.com/

[20] NoSQL Databases Explained (2016, Dec 22). MongoDB. [Online].
Available: https://www.mongodb.com/nosql-explained

[21] Node.js v6.9.2 Documentation (2016, Dec 22). Node.js. [Online].
Available: https://nodejs.org/dist/latest-v6.x/docs/api/

[22] Node.js MongoDB Driver API (2016, Dec 22). mongodb. [Online].
Available: http://mongodb.github.io/node-mongodb-native/2.0/api/

[23] ExpressJS 4.X API (2016, Dec 22). ExpressJS. [Online]. Available:
http://expressjs.com/en/4x/api.html

[24] AngularJS API Docs (2016, Dec 22). AngularJS. [Online]. Available:
https://docs.angularjs.org/api

